2024
Configuration of electrical synapses filters sensory information to drive behavioral choices
Almoril-Porras A, Calvo A, Niu L, Beagan J, Díaz García M, Hawk J, Aljobeh A, Wisdom E, Ren I, Wang Z, Colón-Ramos D. Configuration of electrical synapses filters sensory information to drive behavioral choices. Cell 2024, 188: 89-103.e13. PMID: 39742807, DOI: 10.1016/j.cell.2024.11.037.Peer-Reviewed Original ResearchConceptsElectrical synapsesSensory informationGap junction proteinBehavioral strategiesReduced membrane capacitanceProcessing of sensory informationIncreased membrane resistanceSensory information processingAbnormal responseJunction proteinsSynaptic configurationsInnexin 1Process sensory informationC. elegansBehavioral responsesBehavioral choicesMigratory behaviorSensory stimuliThermotaxis behaviorInformation processingInterneuronsChemical synapsesSynapsesThe Upstream Sequence Transcription Complex dictates nucleosome positioning and promoter accessibility at piRNA genes in the C. elegans germ line
Paniagua N, Roberts C, Gonzalez L, Monedero-Alonso D, Reinke V. The Upstream Sequence Transcription Complex dictates nucleosome positioning and promoter accessibility at piRNA genes in the C. elegans germ line. PLOS Genetics 2024, 20: e1011345. PMID: 38985845, PMCID: PMC11262695, DOI: 10.1371/journal.pgen.1011345.Peer-Reviewed Original ResearchPiRNA genesPiRNA clustersGenomic domainsC. elegans germ lineUpstream sequence transcription complexSmall RNA pathwaysGermline-specific expressionGlobal genome organizationPiRNA precursorsPiRNA pathwayChromosome IVGenome organizationRNA pathwaysChromatin stateTranscribed genesNucleosome positioningNucleosome densityGenome integrityTranscriptional regulationTranscription complexC. elegansPiRNAsGerm lineISW-1Nucleosomal environmentAntagonism between neuropeptides and monoamines in a distributed circuit for pathogen avoidance
Marquina-Solis J, Feng L, Vandewyer E, Beets I, Hawk J, Colón-Ramos D, Yu J, Fox B, Schroeder F, Bargmann C. Antagonism between neuropeptides and monoamines in a distributed circuit for pathogen avoidance. Cell Reports 2024, 43: 114042. PMID: 38573858, PMCID: PMC11063628, DOI: 10.1016/j.celrep.2024.114042.Peer-Reviewed Original ResearchConceptsFLP-1 neuropeptidesBacterium Pseudomonas aeruginosa PA14Pathogen avoidanceGrowth factor BNematode Caenorhabditis elegansC. elegansCaenorhabditis elegansAvoidance signalPathogen infectionFlp-1NeuropeptidePathogensNeuronsMultiple mechanismsMultiple neuronsInfectionNeuromodulationPromote recoveryFactor BAvoidance behaviorAVKPA14Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport
Wu Y, Ding C, Sharif B, Weinreb A, Swaim G, Hao H, Yogev S, Watanabe S, Hammarlund M. Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport. Journal Of Cell Biology 2024, 223: e202305105. PMID: 38470363, PMCID: PMC10932739, DOI: 10.1083/jcb.202305105.Peer-Reviewed Original ResearchConceptsKinesin-1C. elegansN-terminal domainRetrograde trafficAnterograde trafficTransport mitochondriaMitochondria transportPolar localizationMiro-1CRISPR engineeringMitochondria localizationDisordered regionsMitochondriaTransport complexMitochondria distributionAxonal transportAnterograde transportAnterograde axonal transportMotor complexMiroAdaptorCRISPRGenesAcatulides A-G, neuroprotective macrolides from Acaulium album H-JQSF
Tong Z, Wang T, Yang P, Sun J, Zhang C, Khan S, Wang X, Jiao R, Ge H, Zhuang W, Hu G, Tan R. Acatulides A-G, neuroprotective macrolides from Acaulium album H-JQSF. Chinese Chemical Letters 2024, 35: 108488. DOI: 10.1016/j.cclet.2023.108488.Peer-Reviewed Original ResearchOptimizing Visualization of Axonal Transport of Endogenous Cargo by Fluorescence Microscopy in Living Caenorhabditis elegans.
Glomb O, Lyu M, Yogev S. Optimizing Visualization of Axonal Transport of Endogenous Cargo by Fluorescence Microscopy in Living Caenorhabditis elegans. Journal Of Visualized Experiments 2024 PMID: 38436410, DOI: 10.3791/66236.Peer-Reviewed Original ResearchConceptsSynaptic vesicle precursorsCaenorhabditis elegansAxonal cargosLoss of axonal transportCRISPR-Cas9 genome editingAxonal transportImpairs neuronal growthNeuronal cell biologySite of synthesisCas9 genome editingRAB-3Vesicle precursorsC. elegansGenome editingEndogenous labelingEndogenous cargoAxonal proteinsLiving Caenorhabditis elegansCell biologyCytoplasmic backgroundFluorescence microscopyCargoNeuronal growthNeuronal cell bodiesCaenorhabditis
2023
Nuclear envelope assembly relies on CHMP-7 in the absence of BAF–LEM-mediated hole closure
Barger S, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF–LEM-mediated hole closure. Journal Of Cell Science 2023, 136: jcs261385. PMID: 37795681, PMCID: PMC10668030, DOI: 10.1242/jcs.261385.Peer-Reviewed Original ResearchConceptsNuclear envelope assemblySpindle microtubulesNE assemblyEnvelope assemblyC. elegans oocytesLEM-2C. elegansHelix domainBAF-1Family proteinsNucleoplasmic poolNE formationDistinct rolesMicrotubulesAdditional roleNE stabilityPermeability barrierRedundant mechanismsBAFProteinEmbryo survivalBindingAssemblyElegansAutointegrationStructure-function analysis of ceTIR-1/hSARM1 explains the lack of Wallerian axonal degeneration in C. elegans
Khazma T, Grossman A, Guez-Haddad J, Feng C, Dabas H, Sain R, Weitman M, Zalk R, Isupov M, Hammarlund M, Hons M, Opatowsky Y. Structure-function analysis of ceTIR-1/hSARM1 explains the lack of Wallerian axonal degeneration in C. elegans. Cell Reports 2023, 42: 113026. PMID: 37635352, PMCID: PMC10675840, DOI: 10.1016/j.celrep.2023.113026.Peer-Reviewed Original ResearchConceptsC. elegansCryoelectron microscopy structureNematode C. elegansC. elegans neuronsStructure-function analysisMicroscopy structureNADase activityMolecular mechanismsElegansCellular NADModel animalsSpeciesAxon degenerationWallerian axonal degenerationOrthologsOctamerProteinSARM1DivergenceNADSARMExpressionActivityAxonal degeneration
2022
Developmental history modulates adult olfactory behavioral preferences via regulation of chemoreceptor expression in Caenorhabditiselegans
Kyani-Rogers T, Philbrook A, McLachlan I, Flavell S, O’Donnell M, Sengupta P. Developmental history modulates adult olfactory behavioral preferences via regulation of chemoreceptor expression in Caenorhabditiselegans. Genetics 2022, 222: iyac143. PMID: 36094348, PMCID: PMC9630977, DOI: 10.1093/genetics/iyac143.Peer-Reviewed Original ResearchConceptsChemoreceptor genesDAF-16 FOXO transcription factorODR-10FOXO transcription factorsDistinct gene expression profilesGene expression profilesDauer arrestChemoreceptor expressionDauer stageAWA neuronsDauer larvaeC. elegansTranscription factorsTranscriptional profilingBehavioral plasticityPosttranscriptional mechanismsTranscriptional upregulationAdult physiologyExpression patternsExpression profilesSorted populationsBehavioral preferencesVolatile odorantsCaenorhabditiselegansReceptor regulation
2021
The neural G protein Gαo tagged with GFP at an internal loop is functional in Caenorhabditis elegans
Kumar S, Olson AC, Koelle MR. The neural G protein Gαo tagged with GFP at an internal loop is functional in Caenorhabditis elegans. G3: Genes, Genomes, Genetics 2021, 11: jkab167. PMID: 34003969, PMCID: PMC8496287, DOI: 10.1093/g3journal/jkab167.Peer-Reviewed Original ResearchConceptsGreen fluorescent proteinCaenorhabditis elegansGenetic analysisHeterotrimeric G proteinsG protein GαoInternal loopC. elegansProtein complexesBiochemical purificationEpitope tagPlasma membraneAlpha subunitMolecular mechanismsFluorescent proteinGenetic studiesElegansGαoG proteinsEgg layingTransgenic expressionBiochemical studiesGαo proteinsBody morphologyProteinNeurotransmitter releaseC. elegans discriminates colors to guide foraging
Ghosh DD, Lee D, Jin X, Horvitz HR, Nitabach MN. C. elegans discriminates colors to guide foraging. Science 2021, 371: 1059-1063. PMID: 33674494, PMCID: PMC8554940, DOI: 10.1126/science.abd3010.Peer-Reviewed Original ResearchConceptsCellular stress response genesCellular stress response pathwaysStress response genesStress response pathwaysPhotoreceptor genesDiverse phylaC. elegansForaging decisionsResponse pathwaysResponse genesForagingOpsinGenesPhotosensitive cellsNatural environmentCaenorhabditisHarmful bacteriaElegansPhylaOrganismsBacteriaPathwayRoundwormsCellsToxinStructural and developmental principles of neuropil assembly in C. elegans
Moyle MW, Barnes KM, Kuchroo M, Gonopolskiy A, Duncan LH, Sengupta T, Shao L, Guo M, Santella A, Christensen R, Kumar A, Wu Y, Moon KR, Wolf G, Krishnaswamy S, Bao Z, Shroff H, Mohler WA, Colón-Ramos DA. Structural and developmental principles of neuropil assembly in C. elegans. Nature 2021, 591: 99-104. PMID: 33627875, PMCID: PMC8385650, DOI: 10.1038/s41586-020-03169-5.Peer-Reviewed Original ResearchConceptsSpecific sensory organsNerve ringCaenorhabditis elegansC. elegansMuscle quadrantsNeuropil organizationDevelopmental principlesTissue organizationSensory organsBehavioral circuitsElegansPioneer neuronsCell positionDevelopmental sequenceStratified architectureTemporal progressionPrecise circuitsPacked neuronsUnique morphologyNeuronsSequenceOutgrowthAssemblyHierarchical developmentNeuropil
2020
Three Rules Explain Transgenerational Small RNA Inheritance in C. elegans
Houri-Zeevi L, Kohanim Y, Antonova O, Rechavi O. Three Rules Explain Transgenerational Small RNA Inheritance in C. elegans. Cell 2020, 182: 1186-1197.e12. PMID: 32841602, PMCID: PMC7479518, DOI: 10.1016/j.cell.2020.07.022.Peer-Reviewed Original ResearchThe stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival
Schulz A, Sekine Y, Oyeyemi MJ, Abrams AJ, Basavaraju M, Han SM, Groth M, Morrison H, Strittmatter SM, Hammarlund M. The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival. Journal Of Cell Biology 2020, 219: e201807127. PMID: 31968056, PMCID: PMC7041677, DOI: 10.1083/jcb.201807127.Peer-Reviewed Original ResearchConceptsNeuronal stress resistanceStress resistanceNovel cellular responsesMouse neuronsVariety of stressesCaenorhabditis elegansC. elegansTranscriptional analysisSingle homologueEnvironmental stressFunctional characterizationCellular responsesCell deathNeuronal cell deathNeuronal glycogenGlycogen metabolismWidespread neuronal cell deathElegansSurvival of animalsTauopathy modelMaladaptive responsesKey roleHomologuesGlycogen levelsKnockdown
2019
Isolated C. elegans germ nuclei exhibit distinct genomic profiles of histone modification and gene expression
Han M, Wei G, McManus CE, Hillier LW, Reinke V. Isolated C. elegans germ nuclei exhibit distinct genomic profiles of histone modification and gene expression. BMC Genomics 2019, 20: 500. PMID: 31208332, PMCID: PMC6580472, DOI: 10.1186/s12864-019-5893-9.Peer-Reviewed Original ResearchConceptsHistone modificationsGerm cellsC. elegansC. elegans germ cellsGene expressionDevelopmental gene expressionGene expression mechanismsIsolation of nucleiGene regulationTranscriptome analysisChromatin immunoprecipitationGerm lineGenomic analysisDistinct genomic profilesRegulatory mechanismsRepressive mechanismsExpression mechanismElegansPure populationsGenomic profilesConsequent discoveriesCellsExpressionGenomeNucleusIsotropic Light-Sheet Microscopy and Automated Cell Lineage Analyses to Catalogue Caenorhabditis elegans Embryogenesis with Subcellular Resolution.
Duncan LH, Moyle MW, Shao L, Sengupta T, Ikegami R, Kumar A, Guo M, Christensen R, Santella A, Bao Z, Shroff H, Mohler W, Colón-Ramos DA. Isotropic Light-Sheet Microscopy and Automated Cell Lineage Analyses to Catalogue Caenorhabditis elegans Embryogenesis with Subcellular Resolution. Journal Of Visualized Experiments 2019 PMID: 31233035, PMCID: PMC7255390, DOI: 10.3791/59533.Peer-Reviewed Original ResearchConceptsGene expressionC. elegans embryosCell lineage identityCell lineage analysisSingle-cell resolutionElegans embryosCaenorhabditis elegansC. elegansSelective plane illumination microscopyLight-sheet microscopyLineage analysisNematode embryosCell resolutionEntire nervous systemSubcellular levelOnly organismSubcellular resolutionElegansCellular originSingle cellsEmbryosIllumination microscopyEmbryogenesisMorphological dynamicsExpressionSerotonin and neuropeptides are both released by the HSN command neuron to initiate C. elegans egg laying
Brewer JC, Olson AC, Collins KM, Koelle MR. Serotonin and neuropeptides are both released by the HSN command neuron to initiate C. elegans egg laying. PLOS Genetics 2019, 15: e1007896. PMID: 30677018, PMCID: PMC6363226, DOI: 10.1371/journal.pgen.1007896.Peer-Reviewed Original ResearchConceptsHermaphrodite-specific neuronsEgg-laying defectsNLP-3C. elegansEgg-laying musclesEgg-laying circuitDirect postsynaptic targetsEgg-laying behaviorSerotonergic Hermaphrodite Specific NeuronsMuscle cellsSmall molecule neurotransmittersNull mutantsHSN neuronsDouble mutantSingle mutantsMutant animalsSerotonergic neuronsWild-type animalsSevere defectsMutantsElegansNeuropeptide substance PMammalian brainEggsSpecific neurons
2018
Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans.
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WormBook 2018, 2018: 1-52. PMID: 26937633, PMCID: PMC5010795, DOI: 10.1895/wormbook.1.75.2.Peer-Reviewed Original ResearchConceptsHeterotrimeric G proteinsC. elegansG proteinsRic-8 proteinsNew molecular componentsG protein signalingG alpha proteinsNeurotransmitter releaseGenetic screenMammalian orthologsSmall molecule neurotransmittersIndividual receptor typesProtein signalingReceptor homologG alphaElegansDistant cellsAlpha proteinAdditional GPCRsGenetic studiesIndividual neural circuitsGαMolecular componentsGαqGαoRictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans
O’Donnell M, Chao P, Kammenga J, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLOS Genetics 2018, 14: e1007213. PMID: 29415022, PMCID: PMC5819832, DOI: 10.1371/journal.pgen.1007213.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsAnimals, Genetically ModifiedBrainCaenorhabditis elegansCaenorhabditis elegans ProteinsGene Expression Regulation, DevelopmentalIntestinal MucosaIntestinesMechanistic Target of Rapamycin Complex 2Neuronal PlasticityPhenotypeRapamycin-Insensitive Companion of mTOR ProteinSensory Receptor CellsSignal TransductionTemperatureConceptsQuantitative trait lociDauer larval stageTarget of rapamycinNematode C. elegansExternal cuesInsulin-like peptidesNeuronal functionDAF-7Phenotypic plasticityDaf-28Developmental decisionsC. elegansTrait lociCellular stressorsBacterial foodGenetic variationForaging behaviorRictor/Reproductive growthLarval developmentEnvironmental cuesNeuroendocrine gene expressionGene expressionLarval stagesFood signals
2017
Do developmental temperatures affect redox level and lifespan in C. elegans through upregulation of peroxiredoxin?
Henderson D, Huebner C, Markowitz M, Taube N, Harvanek ZM, Jakob U, Knoefler D. Do developmental temperatures affect redox level and lifespan in C. elegans through upregulation of peroxiredoxin? Redox Biology 2017, 14: 386-390. PMID: 29055282, PMCID: PMC5647470, DOI: 10.1016/j.redox.2017.10.003.Peer-Reviewed Original ResearchConceptsC. elegansC. elegans larvaeRedox stateVivo redox stateReduced redox statePoikilothermic organismsDevelopmental temperatureLifespan extensionRedox statusMechanistic underpinningsBeneficial long-term consequencesElegansExpression levelsOrganismsVivo redox statusWormsRedox levelsCaenorhabditisLifespanPeroxiredoxinsGrowth temperatureLarvaeAnimalsUpregulationEffect of temperature
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply