2025
Host-pathogen interaction profiling of nontypeable Haemophilus influenzae and Moraxella catarrhalis coinfection of bronchial epithelial cells.
D'Mello A, Murphy T, Wade M, Kirkham C, Kong Y, Tettelin H, Pettigrew M. Host-pathogen interaction profiling of nontypeable Haemophilus influenzae and Moraxella catarrhalis coinfection of bronchial epithelial cells. MSphere 2025, e0024225. PMID: 40492732, DOI: 10.1128/msphere.00242-25.Peer-Reviewed Original ResearchRegulation of quorum sensingTranscriptome profilingBioinformatics analysisCell culture modelBiological pathwaysIron-sulfur metabolismHost-pathogen interactionsHost biological pathwaysHost cell pathwaysIscR regulonChronic obstructive pulmonary diseaseEpithelial cellsQuorum sensingEpithelial cell infectionRNA-seqH292 cell lineHost pathwaysExacerbation of chronic obstructive pulmonary diseaseNontypeable Haemophilus influenzaeRNA sequencingHost cellsDifferential regulationCulture modelBronchial epithelial cellsMono-infection
2023
Design of a mucin-selective protease for targeted degradation of cancer-associated mucins
Pedram K, Shon D, Tender G, Mantuano N, Northey J, Metcalf K, Wisnovsky S, Riley N, Forcina G, Malaker S, Kuo A, George B, Miller C, Casey K, Vilches-Moure J, Ferracane M, Weaver V, Läubli H, Bertozzi C. Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nature Biotechnology 2023, 42: 597-607. PMID: 37537499, PMCID: PMC11018308, DOI: 10.1038/s41587-023-01840-6.Peer-Reviewed Original ResearchCancer progressionSpecific protein glycoformsUndruggable proteinsTargeted degradationProtein degradationBreast cancer progressionCell surface bindingSubstrate selectivityCell-type selectivityCell deathGlycan motifsProtein glycoformsDiscrete peptidesCancer cellsProteinCulture modelProteaseTarget cellsTumor growthCancer-associated mucinsCellsMouse modelDegradersGrowthMotifRecent and advanced therapy for oral cancer
Baskar G, Palaniyandi T, Viswanathan S, Wahab M, Surendran H, Ravi M, Sivaji A, Rajendran B, Natarajan S, Govindasamy G. Recent and advanced therapy for oral cancer. Biotechnology And Bioengineering 2023, 120: 3105-3115. PMID: 37243814, DOI: 10.1002/bit.28452.Peer-Reviewed Original Research
2019
Hsp110 mitigates α-synuclein pathology in vivo
Taguchi YV, Gorenberg EL, Nagy M, Thrasher D, Fenton WA, Volpicelli-Daley L, Horwich AL, Chandra SS. Hsp110 mitigates α-synuclein pathology in vivo. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 24310-24316. PMID: 31685606, PMCID: PMC6883785, DOI: 10.1073/pnas.1903268116.Peer-Reviewed Original ResearchConceptsΑ-synuclein pathologyOverexpression of Hsp110Α-synuclein aggregationPresynaptic protein α-synucleinΑ-synuclein seedsΑ-synuclein oligomersLewy bodiesMouse modelParkinson's diseaseCell culture modelSynaptic proteomeΑ-synucleinProtein α-synucleinPathologyCulture modelDiseaseMammalian cell culture modelsProtein changesOverexpressionVivoHsp110Molecular facilitatorsMiceUnbiased analysisBrainPolycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2
Kuo IY, Brill AL, Lemos FO, Jiang JY, Falcone JL, Kimmerling EP, Cai Y, Dong K, Kaplan DL, Wallace DP, Hofer AM, Ehrlich BE. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2. Science Signaling 2019, 12 PMID: 31064883, PMCID: PMC6855602, DOI: 10.1126/scisignal.aat7397.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulumPC2 knockdownMitochondrial CaCell culture modelKnockdown of Mfn2Polycystin-2 functionsHuman ADPKD kidneysAutosomal dominant polycystic kidney diseaseKey mitochondrial proteinsAberrant cell proliferationMitochondria-ER contactsCell proliferationER-mitochondrial interfaceKidney cystsIntimate functional relationshipNumerous fluid-filled cystsMitochondrial proteinsCyst-lining epithelial cellsMitofusin 2 expressionCulture modelPolycystin-2Knockdown cellsMitochondrial biogenesisMitofusin 2Mitochondrial respiration
2018
NFkB hyperactivation causes invasion of esophageal squamous cell carcinoma with EGFR overexpression and p120-catenin down-regulation
Lehman HL, Kidacki M, Warrick JI, Stairs DB. NFkB hyperactivation causes invasion of esophageal squamous cell carcinoma with EGFR overexpression and p120-catenin down-regulation. Oncotarget 2018, 9: 11180-11196. PMID: 29541406, PMCID: PMC5834278, DOI: 10.18632/oncotarget.24358.Peer-Reviewed Original ResearchP120-cateninMolecular pathways downstreamInvasive processEGFR overexpressionHuman ESCC cellsCentral regulatorPathways downstreamEsophageal squamous cell carcinomaUpstream regulatorTumor suppressorAggressive cell typesCell typesP120ctnInvasive potentialHuman esophageal keratinocytesEsophageal keratinocytesOverexpressionESCC cellsOrganotypic culture modelRho-kinaseNFkBComplete lossRegulationRegulatorCulture model
2017
A Cell Culture Model of Resistance Arteries.
Biwer L, Lechauve C, Vanhoose S, Weiss M, Isakson B. A Cell Culture Model of Resistance Arteries. Journal Of Visualized Experiments 2017 PMID: 28930992, PMCID: PMC5752193, DOI: 10.3791/55992.Peer-Reviewed Original ResearchConceptsCell culture modelCell typesMyoendothelial junctionsEndothelial cell polarizationPlating of cellsIntact cell layerDifferent cell typesSignaling microdomainCulture modelSpecific proteinsCell polarizationPhysiological relevanceActivity assaysProtein isolationSmooth muscle cellsVascular cellsMuscle cellsImmunofluorescent analysisIntact resistance arteriesProteinCellsMuscle fractionsIsolationCell layerVCCCEffects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium
Xia T, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Research 2017, 139: 72-81. PMID: 28347688, DOI: 10.1016/j.visres.2017.02.006.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsBlood-retinal barrierRetinal pigment epitheliumOuter blood-retinal barrierRPE barrier functionDiabetic retinopathyBarrier functionPigment epitheliumInner blood-retinal barrierEffect of diabetesRetinal endothelial cellsMicrovascular complicationsDiabetes mellitusNeurosensory retinaRetinal healthParacellular spaceRetinopathyMetabolic processingEndothelial cellsEarly effectsDiabetesActive transportTight junctionsCulture modelEpitheliumTransepithelial movementTransforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model
Manzanares MÁ, Usui A, Campbell DJ, Dumur CI, Maldonado GT, Fausther M, Dranoff JA, Sirica AE. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. American Journal Of Pathology 2017, 187: 1068-1092. PMID: 28315313, PMCID: PMC5417049, DOI: 10.1016/j.ajpath.2017.01.013.Peer-Reviewed Original ResearchConceptsIntrahepatic cholangiocarcinomaOrganotypic culture modelDesmoplastic reactionThree-dimensional organotypic culture modelsCulture modelMesenchymal cell originCholangiocarcinoma cell growthCancer-associated myofibroblastsGrowth factor αAggressive malignancyDense fibrocollagenous stromaMalignant gradingCell anaplasiaSitu tumorsHuman Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response to Promote a Tumor-Tolerant Immune Microenvironment
Delitto D, Delitto AE, DiVita BB, Pham K, Han S, Hartlage ER, Newby BN, Gerber MH, Behrns KE, Moldawer LL, Thomas RM, George TJ, Brusko TM, Mathews CE, Liu C, Trevino JG, Hughes SJ, Wallet SM. Human Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response to Promote a Tumor-Tolerant Immune Microenvironment. Cancer Research 2017, 77: 672-683. PMID: 27864347, PMCID: PMC5290036, DOI: 10.1158/0008-5472.can-16-1765.Peer-Reviewed Original ResearchConceptsTumor-associated stromaPancreatic cancerTumor microenvironmentT cell-mediated cytotoxicityCancer cell-conditioned mediumImmunosuppressive tumor microenvironmentT cell proliferationCell-conditioned mediumHuman cell culture modelsTh1 ratioProtective immunityCancer differsHealthy controlsMemory Th17Pancreatic lysatesCell culture modelPrimary human cell culture modelsRobust secretionCancer cellsCD8TA responsesPatientsImmunomodulatory characterCancerCulture model
2016
Dorsomorphin homologue 1, a highly selective small-molecule bone morphogenetic protein inhibitor, suppresses medial artery calcification
Lin T, Wang XL, Zettervall SL, Cai Y, Guzman RJ. Dorsomorphin homologue 1, a highly selective small-molecule bone morphogenetic protein inhibitor, suppresses medial artery calcification. Journal Of Vascular Surgery 2016, 66: 586-593. PMID: 27374065, PMCID: PMC5201454, DOI: 10.1016/j.jvs.2016.03.462.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAorta, ThoracicAortic DiseasesBone Morphogenetic Protein Receptors, Type IBone Morphogenetic ProteinsCells, CulturedHumansMuscle, Smooth, VascularMyocytes, Smooth MuscleOrgan Culture TechniquesOsteogenesisPhosphatesPyrazolesQuinolinesRats, Sprague-DawleySignal TransductionVascular CalcificationConceptsMedial artery calcificationSmooth muscle cellsArtery calcificationMedial calcificationOrgan culture modelVascular patientsVascular calcificationWestern blotCalcium accumulationHuman aortic smooth muscle cellsChronic kidney diseaseCulture modelVascular smooth muscle cellsAortic smooth muscle cellsQuantitative reverse transcription polymerase chain reactionReverse transcription-polymerase chain reactionSMC markersTranscription-polymerase chain reactionHuman smooth muscle cellsAortic medial calcificationMuscle myosin heavy chainHomologue 1Bone morphogenetic proteinKidney diseasePolymerase chain reaction
2015
Characterization of cells from patient-derived fibrovascular membranes in proliferative diabetic retinopathy.
Kim LA, Wong LL, Amarnani DS, Bigger-Allen AA, Hu Y, Marko CK, Eliott D, Shah VA, McGuone D, Stemmer-Rachamimov AO, Gai X, D'Amore PA, Arboleda-Velasquez JF. Characterization of cells from patient-derived fibrovascular membranes in proliferative diabetic retinopathy. Molecular Vision 2015, 21: 673-87. PMID: 26120272, PMCID: PMC4462955.Peer-Reviewed Original ResearchConceptsComparative genomic hybridizationDiscovery of cellsPlasma membrane infoldingsSpecific cell populationsCell identityPrimary culturesCell culture modelCharacterization of cellsMajor chromosomal aberrationsMembrane infoldingsCellular constituentsGenomic hybridizationAlpha-smooth muscle actinThrombospondin-1Cell populationsExpression of markersCulture conditionsStromal cellsPerivascular cellsCulture modelUnique resourceGlial fibrillary acidic protein-positive cellsCellsChromosomal aberrationsEndothelial cellsEffects of Alcohol metabolism on Hepatocellular carcinoma progression
Puszyk W, Hlady R, Tiedemann R, Robertson K, Liu C. Effects of Alcohol metabolism on Hepatocellular carcinoma progression. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.45.8.Peer-Reviewed Original ResearchHepatocellular carcinomaTumor progressionModel of HCCRisk of developmentHepatocellular carcinoma progressionEffects of alcoholCancer deathCommon causeAlcohol consumptionCell culture modelCarcinoma progressionCIMP cancersAlcohol metabolismEthanol metabolismTumor developmentProgressionCancerCulture modelPrimary tissuesDNA methylationMethylation abnormalitiesGene targetsMetabolismCarcinomaAbnormalities
2014
Effects of biomechanical forces on signaling in the cortical collecting duct (CCD)
Carrisoza-Gaytan R, Liu Y, Flores D, Else C, Lee HG, Rhodes G, Sandoval RM, Kleyman TR, Lee FY, Molitoris B, Satlin LM, Rohatgi R. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD). American Journal Of Physiology. Renal Physiology 2014, 307: f195-f204. PMID: 24872319, PMCID: PMC4152160, DOI: 10.1152/ajprenal.00634.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutocrine CommunicationCell LineDinoprostoneEnzyme ActivationExtracellular Signal-Regulated MAP KinasesFurosemideInjectionsIon TransportKidney CortexKidney Tubules, CollectingMechanotransduction, CellularMiceMicroscopy, Fluorescence, Multiphotonp38 Mitogen-Activated Protein KinasesParacrine CommunicationPhosphorylationPotassiumRatsRats, Sprague-DawleySodium ChlorideStress, MechanicalTime FactorsConceptsTubular fluid flow rateP-p38Biomechanical forcesCircumferential stretchIntravital microscopic approachP-ERK expressionFurosemide injectionPGE2 releaseIntracellular MAPKK secretionCollagen type IVCell culture modelTubular diameterEx vivoPGE2Fluid shear stressUnstretched controlsCCD cellsType IVP38 activationCulture modelMAPK signalingVivoPhysiological forcesCation transport
2013
Biomechanical forces differentially regulate signaling in the cortical collecting duct (CCD)
Carrisoza R, Else C, Flores D, Lee H, Lee F, Rohatgi R, Satlin L. Biomechanical forces differentially regulate signaling in the cortical collecting duct (CCD). The FASEB Journal 2013, 27: 1148.10-1148.10. DOI: 10.1096/fasebj.27.1_supplement.1148.10.Peer-Reviewed Original Research
2007
Single-Nucleotide-Specific siRNA Targeting in a Dominant-Negative Skin Model
Hickerson RP, Smith FJ, Reeves RE, Contag CH, Leake D, Leachman SA, Milstone LM, McLean WH, Kaspar RL. Single-Nucleotide-Specific siRNA Targeting in a Dominant-Negative Skin Model. Journal Of Investigative Dermatology 2007, 128: 594-605. PMID: 17914454, DOI: 10.1038/sj.jid.5701060.Peer-Reviewed Original ResearchConceptsWild-type gene expressionBicistronic reporter constructFilament formationDominant-negative genetic disordersNumerous genetic disordersGenetic disordersKeratin filament formationRNA interferenceMutant formsReporter constructsGene expressionMutant mRNAFluorescent reportersMutant allelesCell culture modelSiRNAsSimultaneous expressionK6aK mutationPachyonychia congenitaExpressionCulture modelHuman keratinocytesSiRNASelective inhibition
2000
Differential regulation of tight junction permeability during development of the retinal pigment epithelium
Ban Y, Rizzolo L. Differential regulation of tight junction permeability during development of the retinal pigment epithelium. American Journal Of Physiology - Cell Physiology 2000, 279: c744-c750. PMID: 10942725, DOI: 10.1152/ajpcell.2000.279.3.c744.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumPigment epitheliumBlood-brain barrierEmbryonic ageTight junctionsTight junction permeabilityLow calcium mediumRPE developmentAcetylneuraminic acidMannitol permeabilityJunction permeabilityEpithelial regionsCulture modelDifferent subpopulationsParacellular diffusionEpitheliumDifferential regulationAgeOrder of permeationTwo secreted retinal factors regulate different stages of development of the outer blood–retinal barrier
Ban Y, Wilt S, Rizzolo L. Two secreted retinal factors regulate different stages of development of the outer blood–retinal barrier. Brain Research 2000, 119: 259-267. PMID: 10675776, DOI: 10.1016/s0165-3806(99)00183-2.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic AgonistsAnimalsBiological TransportBlood-Brain BarrierCatecholaminesCell FractionationCells, CulturedChick EmbryoChromatography, GelCulture Media, ConditionedDopamine AgonistsElectric ImpedanceEndopeptidasesEye ProteinsIndolesPigment Epithelium of EyeSerotonin Receptor AgonistsTight JunctionsConceptsRetinal pigment epitheliumBlood-retinal barrierTransepithelial electrical resistanceOuter blood-retinal barrierBlood-brain barrierEffects of astrocytesCultured retinal pigment epitheliumChick retinal pigment epitheliumPigment epitheliumNeural retinaRetinal factorsChick retinaRPE barrierRPE cellsRetinaEndothelial regionAstrocytesTight junctionsCulture modelDiffusible factorsDifferent stagesActive factorsJunction developmentMultistep processFactors
1992
Matrix composition, organization and soluble factors: Modulators of microvascular cell differentiation in vitro
Madri J, Marx M. Matrix composition, organization and soluble factors: Modulators of microvascular cell differentiation in vitro. Kidney International 1992, 41: 560-565. PMID: 1573829, DOI: 10.1038/ki.1992.82.Peer-Reviewed Original ResearchConceptsCell typesStructure/functionMajor cell typesExtracellular matrix componentsVascular cell behaviorVascular smooth muscle cellsEndothelial cellsCell differentiationSoluble factorsCell behaviorExtracellular matrixNeighboring cellsMetabolic functionsDirect interactionSmooth muscle cellsMatrix componentsCell populationsMorphological organizationMuscle cellsMicrovascular endothelial cellsCulture modelCellsMesangial cell populationOrgan culture modelCell isolationInterleukin-6: An autocrine regulator of mesangial cell growth
Coleman D, Ruef C. Interleukin-6: An autocrine regulator of mesangial cell growth. Kidney International 1992, 41: 604-606. PMID: 1573836, DOI: 10.1038/ki.1992.91.Peer-Reviewed Original ResearchConceptsInterleukin-6Transgenic miceVivo studiesTransgenic mouse modelMesangial cell growthIL-6 geneGranulocyte-macrophage colonyIgG1 plasmacytosisCytokine productionImmune cellsMesangioproliferative glomerulonephritisInterleukin-1Autocrine regulatorMouse modelGlomerular cellsCell culture modelProliferative effectTarget cellsTissue distributionImmunoglobulin heavy chain enhancerChain enhancerTissue cellsCulture modelMiceNontransformed cell types
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply