2025
Phenotypic variability in phosphate transport disorders highlights need for individualized treatment strategies
Zhu Z, Bergwitz C. Phenotypic variability in phosphate transport disorders highlights need for individualized treatment strategies. Kidney International 2025, 107: 12-15. PMID: 39746740, DOI: 10.1016/j.kint.2024.10.020.Peer-Reviewed Original ResearchConceptsPhosphate-wasting disordersIndividualized treatment strategiesLong-term outcomesGenetic variantsPathogenic variantsPhenotypic variabilitySLC34A3 geneClinical presentationTreatment strategiesTreatment challengesTransport disordersTreatment outcomesAffected individualsTherapeutic strategiesPotential treatment challengesBiochemical profileVariantsDisordersGenesOutcomesPhenotypeNpt2cSLC34A3Npt2a
2024
Mechanism of phosphate release from actin filaments
Wang Y, Wu J, Zsolnay V, Pollard T, Voth G. Mechanism of phosphate release from actin filaments. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2408156121. PMID: 38980907, PMCID: PMC11260136, DOI: 10.1073/pnas.2408156121.Peer-Reviewed Original ResearchConceptsCryo-EM structureAll-atom molecular dynamics simulationsATP-actinRate of phosphate releaseActin filamentsMechanism of phosphate releaseMolecular dynamics simulationsPhosphate releaseDissociation of phosphateR177Salt bridgesHydrogen bondsEnergy barrierDynamics simulationsComputational studyRelease of phosphateFilamentsRelease pathwayInternal cavityResiduesStudy residuesOccluding interactionsGatePrimary eventD179Biallelic NAA60 variants with impaired N-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications
Chelban V, Aksnes H, Maroofian R, LaMonica L, Seabra L, Siggervåg A, Devic P, Shamseldin H, Vandrovcova J, Murphy D, Richard A, Quenez O, Bonnevalle A, Zanetti M, Kaiyrzhanov R, Salpietro V, Efthymiou S, Schottlaender L, Morsy H, Scardamaglia A, Tariq A, Pagnamenta A, Pennavaria A, Krogstad L, Bekkelund Å, Caiella A, Glomnes N, Brønstad K, Tury S, Moreno De Luca A, Boland-Auge A, Olaso R, Deleuze J, Anheim M, Cretin B, Vona B, Alajlan F, Abdulwahab F, Battini J, İpek R, Bauer P, Zifarelli G, Gungor S, Kurul S, Lochmuller H, Da’as S, Fakhro K, Gómez-Pascual A, Botía J, Wood N, Horvath R, Ernst A, Rothman J, McEntagart M, Crow Y, Alkuraya F, Nicolas G, Arnesen T, Houlden H. Biallelic NAA60 variants with impaired N-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications. Nature Communications 2024, 15: 2269. PMID: 38480682, PMCID: PMC10937998, DOI: 10.1038/s41467-024-46354-0.Peer-Reviewed Original ResearchConceptsPrimary familial brain calcificationDisease-causing mechanismsLoss-of-functionReduced surface levelsTransmembrane proteinsNAA60Progressive movement disorderBiochemical explanationAcetylation capacityPhosphate uptakeGenesBrain calcificationVariantsProteinHeterogeneous disorderSLC20A2Neurobiological functionsSurface levelMovement disordersCalcium depositionCellsCryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex
Chavali S, Chou S, Cao W, Pollard T, De La Cruz E, Sindelar C. Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. Nature Communications 2024, 15: 2059. PMID: 38448439, PMCID: PMC10918085, DOI: 10.1038/s41467-024-46179-x.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActin-Related Protein 2-3 ComplexActinsCryoelectron MicroscopyCytoskeletonPhosphatesConceptsArp2/3 complexActin filamentsCryo-EM structureMother filamentDaughter filamentArp2/3 complex nucleates branched actin filamentsActin filament branchingBranched actin filamentsDissociation of PiADP-PiFilament branchingOrganelle movementADP stateBranch junctionsArp3A-resolutionActinArp2/3ADP-BeFxFilamentsADPPhosphate releaseFilament mechanismArp2Organelles
2023
Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition
Sakuma I, Gaspar R, Luukkonen P, Kahn M, Zhang D, Zhang X, Murray S, Golla J, Vatner D, Samuel V, Petersen K, Shulman G. Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2312666120. PMID: 38127985, PMCID: PMC10756285, DOI: 10.1073/pnas.2312666120.Peer-Reviewed Original ResearchConnected Component Analysis of Dynamical Perturbation Contact Networks
Gheeraert A, Lesieur C, Batista V, Vuillon L, Rivalta I. Connected Component Analysis of Dynamical Perturbation Contact Networks. The Journal Of Physical Chemistry B 2023, 127: 7571-7580. PMID: 37641933, PMCID: PMC10493978, DOI: 10.1021/acs.jpcb.3c04592.Peer-Reviewed Original ResearchTurning up the heat mimics allosteric signaling in imidazole-glycerol phosphate synthase
Maschietto F, Morzan U, Tofoleanu F, Gheeraert A, Chaudhuri A, Kyro G, Nekrasov P, Brooks B, Loria J, Rivalta I, Batista V. Turning up the heat mimics allosteric signaling in imidazole-glycerol phosphate synthase. Nature Communications 2023, 14: 2239. PMID: 37076500, PMCID: PMC10115891, DOI: 10.1038/s41467-023-37956-1.Peer-Reviewed Original ResearchConceptsEffector bindingImidazole Glycerol Phosphate SynthaseLocal amino acidsAmino acid dynamicsImidazole glycerolAllosteric drugsAllosteric activationAllosteric responsePhosphate synthaseAllosteric mechanismMode of activationEnzyme functionAmino acidsAllosteryDrug discoverySynthaseNuclear magnetic resonance spectroscopyBindingMolecular dynamics simulationsActivationAllostericCascadeDynamics simulationsAssociation between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60–69 Years of Age: Evidence from the China BAPE Study
Ding E, Deng F, Fang J, Li T, Hou M, Liu J, Miao K, Yan W, Fang K, Shi W, Fu Y, Liu Y, Dong H, Dong L, Ding C, Liu X, Pollitt K, Ji J, Shi Y, Cai Y, Tang S, Shi X. Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60–69 Years of Age: Evidence from the China BAPE Study. Environmental Health Perspectives 2023, 131: 047009. PMID: 37042841, PMCID: PMC10094192, DOI: 10.1289/ehp11896.Peer-Reviewed Original ResearchConceptsYears of ageOPE exposureAdults 60OPE metabolitesCommon endocrine-disrupting chemicalsChina BAPE studySubsequent key eventsType 2 diabetesExposure reduction strategiesAdverse outcome pathwaysDiabetogenic effectInsulin resistanceUrine metabolomeElevated riskEster exposureParticipants 60Endocrine-disrupting chemicalsBlood transcriptomeAdverse effectsGlycometabolic disordersBiological etiologyAgeT2DMulti-omics analysisMarkers
2022
Long-term Burosumab Administration Is Safe and Effective in Adults With X-linked Hypophosphatemia
Weber TJ, Imel EA, Carpenter TO, Peacock M, Portale AA, Hetzer J, Merritt JL, Insogna K. Long-term Burosumab Administration Is Safe and Effective in Adults With X-linked Hypophosphatemia. The Journal Of Clinical Endocrinology & Metabolism 2022, 108: 155-165. PMID: 36072994, PMCID: PMC9759172, DOI: 10.1210/clinem/dgac518.Peer-Reviewed Original ResearchConceptsSerum phosphate levelsPatient-reported outcomesNormal rangeBurosumab therapyTreatment optionsEffective long-term treatment optionLong-term extension studyLong-term treatment optionNew safety findingsBone turnover markersLong-term administrationPhosphate levelsRespective normal rangesProportion of subjectsLong-term safetyLast doseAdult patientsClinical responseSafety findingsTurnover markersSerum phosphateBone biomarkersStudy endWeek 12Burosumab treatmentCharacterization of the PHOSPHATE RESPONSE 2-dependent and -independent Pi-starvation response secretome in rice
Du Z, Deng S, Wu Z, Cai H, Xu F, Shi L, Wang S, Ding G, Wang C. Characterization of the PHOSPHATE RESPONSE 2-dependent and -independent Pi-starvation response secretome in rice. Journal Of Experimental Botany 2022, 73: 6955-6970. PMID: 35994773, DOI: 10.1093/jxb/erac342.Peer-Reviewed Original ResearchConceptsCell wall remodeling proteinsSuspension-cultured cellsSignal transduction proteinsPi signaling pathwayReactive oxygen speciesTransduction proteinsWild-typePathogen-relatedDifferentially expressed secreted proteinsSignaling pathwayPi-deficient conditionsPi-responsive genesCell wall compositionRegulating stress responsesCell wall structurePi-starvationPi-sufficientPi-repletePathogen resistancePlant cellsReactive oxygen species contentMetabolic proteinsSecreted proteinsPR proteinsTranscription factorsHypophosphatemia: A Practical Guide to Evaluation and Management
Tebben P. Hypophosphatemia: A Practical Guide to Evaluation and Management. Endocrine Practice 2022, 28: 1091-1099. PMID: 35940468, DOI: 10.1016/j.eprac.2022.07.005.Peer-Reviewed Original ResearchMeSH KeywordsBone and BonesFibroblast Growth FactorsHumansHypophosphatemiaOsteomalaciaParathyroid HormonePhosphatesConceptsClinical manifestationsNormal phosphate homeostasisParathyroid hormoneFibroblast growth factorFunction of phosphateRange of symptomsCell membrane integrityEnzyme functionGrowth factorPhosphate balanceSkeletal mineralizationMembrane integrityChronic causesGastrointestinal tractPhosphate homeostasisDiverse rolesEnergy homeostasisHypophosphatemiaMyosin light chain phosphatase catalytic subunit dephosphorylates cardiac myosin via mechanisms dependent and independent of the MYPT regulatory subunits
Lee E, Liu Z, Nguyen N, Nairn A, Chang AN. Myosin light chain phosphatase catalytic subunit dephosphorylates cardiac myosin via mechanisms dependent and independent of the MYPT regulatory subunits. Journal Of Biological Chemistry 2022, 298: 102296. PMID: 35872014, PMCID: PMC9418503, DOI: 10.1016/j.jbc.2022.102296.Peer-Reviewed Original ResearchConceptsMyosin light chain phosphataseRegulatory light chainRegulatory subunitCatalytic subunitPhosphatase catalytic subunitMain catalytic subunitSmooth muscle myosin light chain phosphataseNon-muscle cellsMuscle myosin light chain phosphataseMyosin regulatory light chainMyosin light chain kinaseLight chain kinasePP1cβTrimeric proteinConditional knockout miceLight chain phosphatasePhosphatase activitySubunitsPhosphate/Chain kinaseMuscle pathogenesisPhysiological regulationKnockout animalsMain isoformsProteinAuthors’ Reply: Calcium-Based Phosphate Binders and Plasma Oxalate Concentration in Dialysis Patients
Pfau A, Knauf F. Authors’ Reply: Calcium-Based Phosphate Binders and Plasma Oxalate Concentration in Dialysis Patients. Journal Of The American Society Of Nephrology 2022, 33: 1428-1428. PMID: 35500939, PMCID: PMC9257799, DOI: 10.1681/asn.2022030359.Peer-Reviewed Original ResearchThe nucleoporin Gle1 activates DEAD-box protein 5 (Dbp5) by promoting ATP binding and accelerating rate limiting phosphate release
Gray S, Cao W, Montpetit B, De La Cruz EM. The nucleoporin Gle1 activates DEAD-box protein 5 (Dbp5) by promoting ATP binding and accelerating rate limiting phosphate release. Nucleic Acids Research 2022, 50: 3998-4011. PMID: 35286399, PMCID: PMC9023272, DOI: 10.1093/nar/gkac164.Peer-Reviewed Original ResearchConceptsNuclear pore complexRNA exportDEAD-box protein Dbp5ATPase cycleDbp5's ATPase activityDEAD (Asp-Glu-Ala-Asp) box protein 5Pore complexDbp5ATP bindingATPase cyclingNucleotide stateCytoplasmic faceGle1Pool of ATPADP-PiGene expressionProtein 5Mechanistic understandingNucleoporinsNup159ATPase activityATP dissociationATPPi releasePi release rate
2021
Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis
Deng S, Li J, Du Z, Wu Z, Yang J, Cai H, Wu G, Xu F, Huang Y, Wang S, Wang C. Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis. Plant Cell & Environment 2021, 45: 191-205. PMID: 34550608, DOI: 10.1111/pce.14191.Peer-Reviewed Original ResearchConceptsPi stress conditionsGolgi apparatusEndoplasmic reticulumRecycle PiShort-term Pi starvationPi homeostasisPi starvation signalingAcid phosphatase 1Type of leavesPi-deficient conditionsActive acid phosphataseRegulating rice growthStress conditionsAcid phosphataseIntracellular acid phosphatasePi starvationStarvation signalSubcellular localizationPhylogenic analysisPi-sufficientPlant cellsStress adaptationPhosphatase 1Cell metabolismEnzymatic activityVariable Clinical Presentation of Children with Hereditary Hypophosphatemic Rickets with Hypercalciuria: A Case Series and Review of the Literature
Christensen S, Tebben P, Sas D, Creo A. Variable Clinical Presentation of Children with Hereditary Hypophosphatemic Rickets with Hypercalciuria: A Case Series and Review of the Literature. Hormone Research In Paediatrics 2021, 94: 374-389. PMID: 34666334, DOI: 10.1159/000520299.Peer-Reviewed Original ResearchConceptsHereditary hypophosphatemic ricketsRenal symptomsPhosphate wastingHypophosphatemic ricketsVariable clinical presentationRenal phosphate wastingPhenotype-genotype correlationSLC34A3 mutationsUrine phosphateBone symptomsCase seriesMineralization defectRare conditionSLC34A3 variantsSerum phosphorusHHRHAccurate diagnosisUrinary stonesPatientsCombined boneHypercalciuriaLiterature reviewSymptomsSLC34A3Systematic literature reviewLimitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis
Bruna RE, Kendra CG, Groisman EA, Pontes MH. Limitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2021370118. PMID: 33707210, PMCID: PMC7980370, DOI: 10.1073/pnas.2021370118.Peer-Reviewed Original ResearchConceptsCytoplasmic MgPhosphate assimilationRibosomal RNARegulatory logicP assimilationMolecular basisLoss of viabilityProtein inhibitsPi toxicityAdenosine triphosphateATP synthesisProtein synthesisATP accumulationHomeostasisBacterial growthCytosolic PiDependent processesMagnesium homeostasisBacteriaBiological moleculesInorganic orthophosphateEssential componentAssimilationGrowthRNAFGF23 signalling and physiology.
Ho BB, Bergwitz C. FGF23 signalling and physiology. Journal Of Molecular Endocrinology 2021, 66: r23-r32. PMID: 33338030, PMCID: PMC8782161, DOI: 10.1530/jme-20-0178.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsO-glycosylation of FGF23FGF23 signalingSubtilisin-like proprotein convertase furinSuppressing phosphate reabsorptionProprotein convertase furinPost-translationallyO-glycosylationIntact FGF23C-terminusGenetic activityPrevent proteolysisParacrine FGFsHigh-affinity binding sitesFibroblast growth factor 23Fruit flyActive intact FGF23Convertase furinChronic kidney diseaseFGF23 fragmentsGrowth factor 23Physiological roleEndocrine FGFsDihydroxyvitamin D synthesisHyperphosphatemic disordersIntestinal phosphate absorptionGenome-wide analysis of haloacid dehalogenase genes reveals their function in phosphate starvation responses in rice
Du Z, Deng S, Wu Z, Wang C. Genome-wide analysis of haloacid dehalogenase genes reveals their function in phosphate starvation responses in rice. PLOS ONE 2021, 16: e0245600. PMID: 33481906, PMCID: PMC7822558, DOI: 10.1371/journal.pone.0245600.Peer-Reviewed Original ResearchConceptsHAD genesHAD proteinsHAD superfamilyStarvation responseMining of transcriptome dataPi starvation responsesGenome-wide analysisPhosphate starvation responsePi stress conditionsHaloacid dehalogenase geneGenes of riceSequence similarityGenome searchPhosphatase domainPi starvationCap domainCis-elementsMotif analysisQRT-PCR resultsTranscriptome dataDehalogenase genesCollinear relationshipsBioinformatics analysisGenesOrganic phosphate substrates
2020
Response of the ENPP1‐Deficient Skeletal Phenotype to Oral Phosphate Supplementation and/or Enzyme Replacement Therapy: Comparative Studies in Humans and Mice
Ferreira CR, Kavanagh D, Oheim R, Zimmerman K, Stürznickel J, Li X, Stabach P, Rettig RL, Calderone L, MacKichan C, Wang A, Hutchinson HA, Nelson T, Tommasini SM, von Kroge S, Fiedler IA, Lester ER, Moeckel GW, Busse B, Schinke T, Carpenter TO, Levine MA, Horowitz MC, Braddock DT. Response of the ENPP1‐Deficient Skeletal Phenotype to Oral Phosphate Supplementation and/or Enzyme Replacement Therapy: Comparative Studies in Humans and Mice. Journal Of Bone And Mineral Research 2020, 36: 942-955. PMID: 33465815, PMCID: PMC8739051, DOI: 10.1002/jbmr.4254.Peer-Reviewed Original ResearchConceptsBone mineral densityLow bone mineral densityTrabecular bone massBone massEarly-onset osteoporosisAsj/Conventional therapyLower trabecular bone massGreater bone fragilityRisk of nephrocalcinosisHigh-phosphate dietLow bone massCortical bone massDevelopment of nephrocalcinosisBone biomechanical propertiesAcademic medical centerPlasma phosphorus concentrationsAutosomal recessive hypophosphatemic ricketsRecessive hypophosphatemic ricketsENPP1 deficiencyRachitic phenotypeMedullary nephrocalcinosisRenal failureNormal chowMineral density
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply