2024
Biallelic NAA60 variants with impaired N-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications
Chelban V, Aksnes H, Maroofian R, LaMonica L, Seabra L, Siggervåg A, Devic P, Shamseldin H, Vandrovcova J, Murphy D, Richard A, Quenez O, Bonnevalle A, Zanetti M, Kaiyrzhanov R, Salpietro V, Efthymiou S, Schottlaender L, Morsy H, Scardamaglia A, Tariq A, Pagnamenta A, Pennavaria A, Krogstad L, Bekkelund Å, Caiella A, Glomnes N, Brønstad K, Tury S, Moreno De Luca A, Boland-Auge A, Olaso R, Deleuze J, Anheim M, Cretin B, Vona B, Alajlan F, Abdulwahab F, Battini J, İpek R, Bauer P, Zifarelli G, Gungor S, Kurul S, Lochmuller H, Da’as S, Fakhro K, Gómez-Pascual A, Botía J, Wood N, Horvath R, Ernst A, Rothman J, McEntagart M, Crow Y, Alkuraya F, Nicolas G, Arnesen T, Houlden H. Biallelic NAA60 variants with impaired N-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications. Nature Communications 2024, 15: 2269. PMID: 38480682, PMCID: PMC10937998, DOI: 10.1038/s41467-024-46354-0.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationBrainBrain DiseasesHumansInheritance PatternsMutationPhosphatesSodium-Phosphate Cotransporter Proteins, Type IIIConceptsPrimary familial brain calcificationDisease-causing mechanismsLoss-of-functionReduced surface levelsTransmembrane proteinsNAA60Progressive movement disorderBiochemical explanationAcetylation capacityPhosphate uptakeGenesBrain calcificationVariantsProteinHeterogeneous disorderSLC20A2Neurobiological functionsSurface levelMovement disordersCalcium depositionCells
2020
Slc20a1/Pit1 and Slc20a2/Pit2 are essential for normal skeletal myofiber function and survival
Chande S, Caballero D, Ho BB, Fetene J, Serna J, Pesta D, Nasiri A, Jurczak M, Chavkin NW, Hernando N, Giachelli CM, Wagner CA, Zeiss C, Shulman GI, Bergwitz C. Slc20a1/Pit1 and Slc20a2/Pit2 are essential for normal skeletal myofiber function and survival. Scientific Reports 2020, 10: 3069. PMID: 32080237, PMCID: PMC7033257, DOI: 10.1038/s41598-020-59430-4.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsCell LineCell SurvivalElectron TransportEnergy MetabolismHand StrengthMice, KnockoutModels, BiologicalMuscle CellsMuscle Fibers, SkeletalNecrosisOxygen ConsumptionPhosphatesSodium-Phosphate Cotransporter Proteins, Type IIITranscription Factor Pit-1ConceptsHyp miceMuscle functionSkeletal muscleMyofiber functionNormal body weightSkeletal muscle atrophyGene dose-dependent reductionConditional knockout miceReduced oxygen consumption rateStimulation of AMP kinaseKnockout miceHypophosphatemic disordersMuscle atrophyERK1/2 activationGrip strengthConditional deletionHormonal changesLow bloodBody weightC2C12 myoblastsMiceFurther evaluationBlood phosphateDependent reductionAMP kinase
2012
Roles of Major Facilitator Superfamily Transporters in Phosphate Response in Drosophila
Bergwitz C, Rasmussen MD, DeRobertis C, Wee MJ, Sinha S, Chen HH, Huang J, Perrimon N. Roles of Major Facilitator Superfamily Transporters in Phosphate Response in Drosophila. PLOS ONE 2012, 7: e31730. PMID: 22359624, PMCID: PMC3280997, DOI: 10.1371/journal.pone.0031730.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDrosophila melanogasterDrosophila ProteinsMitogen-Activated Protein KinasesPhosphatesProton-Phosphate SymportersSaccharomyces cerevisiae ProteinsSodium-Phosphate Cotransporter Proteins, Type IIITissue DistributionConceptsActivation of MAPKMajor Facilitator Superfamily (MFS) transporterDrosophila larval developmentRNAi-mediated knockdownMajor facilitator superfamily transportersPutative phosphate transportersDrosophila S2R+ cellsFacilitator superfamily transporterSodium-dependent fashionMetazoan speciesMetazoan cellsDrosophila cellsMammalian cellsPhosphate transporterLarval developmentMajor facilitatorPHO84S2R+ cellsFacilitator superfamilySuperfamily transportersMalpighian tubulesXenopus oocyte assayDrosophilaCellular effectsXenopus oocytes
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply