2023
PPP1R12C Promotes Atrial Hypocontractility in Atrial Fibrillation
Perike S, Gonzalez-Gonzalez F, Abu-Taha I, Damen F, Hanft L, Lizama K, Aboonabi A, Capote A, Aguilar-Sanchez Y, Levin B, Han Z, Sridhar A, Grand J, Martin J, Akar J, Warren C, Solaro R, Ong S, Darbar D, McDonald K, Goergen C, Wolska B, Dobrev D, Wehrens X, McCauley M. PPP1R12C Promotes Atrial Hypocontractility in Atrial Fibrillation. Circulation Research 2023, 133: 758-771. PMID: 37737016, PMCID: PMC10616980, DOI: 10.1161/circresaha.123.322516.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtrial FibrillationHeart AtriaHumansMicePhosphorylationProtein Phosphatase 1StrokeConceptsSinus rhythm controlsAtrial hypocontractilityAF inducibilityAtrial contractilityAtrial fibrillationRhythm controlHuman patientsRight atrial appendage tissuePacing-induced AFThromboembolic stroke riskAtrial ejection fractionAtrial appendage tissueAtrial HL-1 cellsHL-1 cellsAtrial strainStroke riskAtrial sizeEjection fractionContractile functionElectrophysiology studyHypocontractilityWestern blotPatientsAtrial myosin light chainSarcomere function
2022
DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum
Kuroiwa M, Shuto T, Nagai T, Amano M, Kaibuchi K, Nairn A, Nishi A. DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum. Neurochemistry International 2022, 162: 105438. PMID: 36351540, DOI: 10.1016/j.neuint.2022.105438.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Phosphatase 1DARPP-32Receptor-induced phosphorylationPKA-dependent phosphorylationPKA/DARPPPP1 inhibitorPP1 substratesPP1 inhibitionPKA sitesRap1 activationOkadaic acidRASGRP2Novel componentRap1GAPPhosphorylationDARPP-32 knockout micePhospho-Thr34 DARPP-32Receptor activationPKAKnockout miceReceptor stimulationPP2A.Ser499Rap1Myosin light chain phosphatase catalytic subunit dephosphorylates cardiac myosin via mechanisms dependent and independent of the MYPT regulatory subunits
Lee E, Liu Z, Nguyen N, Nairn A, Chang AN. Myosin light chain phosphatase catalytic subunit dephosphorylates cardiac myosin via mechanisms dependent and independent of the MYPT regulatory subunits. Journal Of Biological Chemistry 2022, 298: 102296. PMID: 35872014, PMCID: PMC9418503, DOI: 10.1016/j.jbc.2022.102296.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCardiac MyosinsMiceMice, KnockoutMyosin-Light-Chain PhosphatasePhosphatesPhosphorylationProtein Phosphatase 1ConceptsMyosin light chain phosphataseRegulatory light chainRegulatory subunitCatalytic subunitPhosphatase catalytic subunitMain catalytic subunitSmooth muscle myosin light chain phosphataseNon-muscle cellsMuscle myosin light chain phosphataseMyosin regulatory light chainMyosin light chain kinaseLight chain kinasePP1cβTrimeric proteinConditional knockout miceLight chain phosphatasePhosphatase activitySubunitsPhosphate/Chain kinaseMuscle pathogenesisPhysiological regulationKnockout animalsMain isoformsProtein
2020
Temperature-Induced uncoupling of cell cycle regulators
Falahati H, Hur W, Di Talia S, Wieschaus E. Temperature-Induced uncoupling of cell cycle regulators. Developmental Biology 2020, 470: 147-153. PMID: 33278404, PMCID: PMC8106975, DOI: 10.1016/j.ydbio.2020.11.010.Peer-Reviewed Original ResearchConceptsCell cycle eventsCycle eventsEarly cell cycle eventsMajor mitotic kinaseCell cycle stepsEarly Drosophila embryoCell cycle progressionCell cycle regulatorsDrosophila embryosMitotic kinasesChromosome condensationDifferent kinasesCdk1 activityEmbryo activationCycle progressionCycle regulatorsEnvironmental variabilityCell cycle transition timesPrometaphaseCDK1KinaseMitosisVivo biosensorsEmbryos
2019
Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1)
Ali SR, Malone TJ, Zhang Y, Prechova M, Kaczmarek LK. Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). The FASEB Journal 2019, 34: 1591-1601. PMID: 31914597, PMCID: PMC6956700, DOI: 10.1096/fj.201902366r.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Phosphatase 1Binding of PP1C-terminusCytoplasmic signaling proteinsCytoplasmic C-terminusActin-binding proteinsSlack channelsPKC phosphorylation sitesPhosphoprotein substratesDisease-causing mutationsPhosphorylation sitesSignaling proteinsSlack currentsHuman mutationsSodium-activated potassium channelsPHACTR1Slack genePotassium channelsProteinActinMutationsPatch-clamp recordingsCentral nervous systemMutants
2017
Protein Phosphatase Inhibitor-1 Gene Therapy in a Swine Model of Nonischemic Heart Failure
Watanabe S, Ishikawa K, Fish K, Oh JG, Motloch LJ, Kohlbrenner E, Lee P, Xie C, Lee A, Liang L, Kho C, Leonardson L, McIntyre M, Wilson S, Samulski RJ, Kranias EG, Weber T, Akar FG, Hajjar RJ. Protein Phosphatase Inhibitor-1 Gene Therapy in a Swine Model of Nonischemic Heart Failure. Journal Of The American College Of Cardiology 2017, 70: 1744-1756. PMID: 28958332, PMCID: PMC5807083, DOI: 10.1016/j.jacc.2017.08.013.Peer-Reviewed Original ResearchConceptsNonischemic heart failureHeart failureEjection fractionIntracoronary deliveryTherapeutic efficacyLeft ventricular end-diastolic pressureDp/dt maximumLeft ventricular ejection fractionVentricular end-diastolic pressureVolume overload heart failureAdverse electrical remodelingIschemic heart failureVentricular ejection fractionVentricular volume indexAtrial ejection fractionEnd-diastolic pressureSevere mitral regurgitationCellular immune responsesCalcium transient amplitudeLarge animal modelGene therapyActive inhibitor-1Improved contractilityInhibitor-1 geneCardiac dysfunction
2014
Regulation of Protein Phosphatase 1I by Cdc25C-associated Kinase 1 (C-TAK1) and PFTAIRE Protein Kinase*
Platholi J, Federman A, Detert JA, Heerdt P, Hemmings HC. Regulation of Protein Phosphatase 1I by Cdc25C-associated Kinase 1 (C-TAK1) and PFTAIRE Protein Kinase*. Journal Of Biological Chemistry 2014, 289: 23893-23900. PMID: 25028520, PMCID: PMC4156073, DOI: 10.1074/jbc.m114.557744.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1IC-TAK1Protein kinaseKinase 1GSK-3Protein phosphatase 1Phosphatase activityPP-1cThr-72Multisite phosphorylationActivating residuesPhosphatase 1Regulatory subunitSer-86Ser-71Subsequent phosphorylationMajor endogenous formsInhibitor 2PhosphorylationKinaseCdc25CEndogenous formPFTK1ResiduesActivationCardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart Failure
Ishikawa K, Fish KM, Tilemann L, Rapti K, Aguero J, Santos-Gallego CG, Lee A, Karakikes I, Xie C, Akar FG, Shimada YJ, Gwathmey JK, Asokan A, McPhee S, Samulski J, Samulski RJ, Sigg DC, Weber T, Kranias EG, Hajjar RJ. Cardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart Failure. Molecular Therapy 2014, 22: 2038-2045. PMID: 25023328, PMCID: PMC4429688, DOI: 10.1038/mt.2014.127.Peer-Reviewed Original ResearchConceptsIschemic heart failureHigh-dose groupHeart failureCardiac functionLarge anterior myocardial infarctionLeft ventricular ejection fractionPreload recruitable stroke workChronic heart failureAdvanced heart failureLow-dose groupVentricular ejection fractionAnterior myocardial infarctionActive inhibitor-1Ejection fractionIntracoronary injectionSaline groupContractility indexMyocardial infarctionPressure-volume analysisStroke volumeStroke workCardiac performanceHemodynamic parametersCardiovascular systemCardiac gene therapy
2011
Influence of the Hepatic Eukaryotic Initiation Factor 2α (eIF2α) Endoplasmic Reticulum (ER) Stress Response Pathway on Insulin-mediated ER Stress and Hepatic and Peripheral Glucose Metabolism*
Birkenfeld AL, Lee HY, Majumdar S, Jurczak MJ, Camporez JP, Jornayvaz FR, Frederick DW, Guigni B, Kahn M, Zhang D, Weismann D, Arafat AM, Pfeiffer AF, Lieske S, Oyadomari S, Ron D, Samuel VT, Shulman GI. Influence of the Hepatic Eukaryotic Initiation Factor 2α (eIF2α) Endoplasmic Reticulum (ER) Stress Response Pathway on Insulin-mediated ER Stress and Hepatic and Peripheral Glucose Metabolism*. Journal Of Biological Chemistry 2011, 286: 36163-36170. PMID: 21832042, PMCID: PMC3196114, DOI: 10.1074/jbc.m111.228817.Peer-Reviewed Original ResearchConceptsHepatic glucose productionInsulin sensitivityInsulin resistanceCaloric excessER stressHigh-fat diet-fed miceBasal plasma glucose concentrationsGlucose productionIGFBP-3 levelsHepatic ERPeripheral glucose metabolismTissue insulin sensitivityDiet-fed miceHepatic lipid accumulationHigh-fat dietHyperinsulinemic-euglycemic clampHepatic insulin sensitivityInfusion of insulinPlasma glucose concentrationEndoplasmic reticulum stress response pathwayEndoplasmic reticulum stressInsulin-stimulated muscleIGFBP-3Fat dietMuscle glucose
2008
Activation of brain protein phosphatase‐1I following cardiac arrest and resuscitation involving an interaction with 14‐3‐3γ
Platholi J, Heerdt PM, Tung H, Hemmings HC. Activation of brain protein phosphatase‐1I following cardiac arrest and resuscitation involving an interaction with 14‐3‐3γ. Journal Of Neurochemistry 2008, 105: 2029-2038. PMID: 18284617, PMCID: PMC3872065, DOI: 10.1111/j.1471-4159.2008.05300.x.Peer-Reviewed Original ResearchConceptsGlobal cerebral ischemiaCerebral ischemiaCardiac arrestTransient global cerebral ischemiaTransient cerebral ischemiaPotential therapeutic targetRelevant pig modelIschemic brainNeuroprotective mechanismsControl brainsInhibitory modulatorTherapeutic targetPig modelIschemiaPig brainBrain proteinsMechanism-based approachBrainProtein betaResuscitationEnergy metabolismCritical regulatorArrestVivoActivation
2007
Differential regulation of protein phosphatase-1I by neurabin
Bullock SA, Platholi J, Gjyrezi A, Heerdt PM, Tung HY, Hemmings HC. Differential regulation of protein phosphatase-1I by neurabin. Biochemical And Biophysical Research Communications 2007, 358: 140-144. PMID: 17467665, PMCID: PMC1989152, DOI: 10.1016/j.bbrc.2007.04.076.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Phosphatase 1Protein phosphatase 1IProtein phosphataseActivation domainMultimeric complexesRegulatory subunitCatalytic subunitSubcellular localizationProtein kinaseSubstrate specificityRegulatory proteinsUnidentified proteinsNeurabinDifferential regulationNovel mechanismProteinSubunitsRegulationMajor formDistinct formsDependent formKinaseActinActivatorThe Phosphorylation State of GluR1 Subunits Determines the Susceptibility of AMPA Receptors to Calpain Cleavage*
Yuen EY, Liu W, Yan Z. The Phosphorylation State of GluR1 Subunits Determines the Susceptibility of AMPA Receptors to Calpain Cleavage*. Journal Of Biological Chemistry 2007, 282: 16434-16440. PMID: 17428797, DOI: 10.1074/jbc.m701283200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcium-Calmodulin-Dependent Protein Kinase Type 2Calcium-Calmodulin-Dependent Protein KinasesCalpainCells, CulturedCerebral CortexEnzyme ActivationNeuronsPhosphoprotein PhosphatasesPhosphorylationProtein Phosphatase 1Protein Processing, Post-TranslationalProtein SubunitsRatsRats, Sprague-DawleyReceptors, AMPATime FactorsConceptsCalpain cleavagePhosphorylation stateProteolytic cleavageDependent protein kinase IITerminal fusion proteinEffect of phosphorylationProtein phosphatase 1/2AProtein kinase IIPhosphorylation sitesProtein kinaseCalpain cleavage sitesGluR1 subunitKinase IIFusion proteinActive CaMKIIAMPAR currentsCalpain regulationCleavage siteIsoxazoleproprionic acid (AMPA) receptorSubunitsIonotropic glutamate receptorsN-methyl-D-aspartate receptorsPhysiological studiesExcitatory synaptic transmissionAMPA receptor currents
2006
Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation
González-Santiago L, Suárez Y, Zarich N, Muñoz-Alonso M, Cuadrado A, Martínez T, Goya L, Iradi A, Sáez-Tormo G, Maier J, Moorthy A, Cato A, Rojas J, Muñoz A. Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death & Differentiation 2006, 13: 1968-1981. PMID: 16543941, DOI: 10.1038/sj.cdd.4401898.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsApoptosisBreast NeoplasmsCalciumCell Cycle ProteinsCopperDepsipeptidesDown-RegulationDual Specificity Phosphatase 1Enzyme ActivationGlutathione DisulfideGlutathione PeroxidaseGlutathione ReductaseHeLa CellsHomeostasisHumansImmediate-Early ProteinsJNK Mitogen-Activated Protein KinasesMembrane PotentialsMiceMitochondrial MembranesOxidative StressPeptides, CyclicPhosphoprotein PhosphatasesProtein Phosphatase 1Protein Tyrosine Phosphatasesrac1 GTP-Binding ProteinReactive Oxygen SpeciesConceptsJun N-terminal kinaseJNK activationRac1 activationGlutathione homeostasisRac1 small GTPaseJNK-dependent apoptosisRac1 GTPase activationMitochondrial membrane potentialN-terminal kinaseMKP-1 phosphataseSmall GTPaseGTPase activationReactive oxygen speciesHuman breast cancer cellsGSSG/GSH ratioCell deathBreast cancer cellsRapid activationExogenous GSHRNA duplexesSustained activationGSH synthesisSpecific Rac1 inhibitorAplidinDownregulation of Rac1
2005
Neutrophils Lacking Platelet-Endothelial Cell Adhesion Molecule-1 Exhibit Loss of Directionality and Motility in CXCR2-Mediated Chemotaxis
Wu Y, Stabach P, Michaud M, Madri JA. Neutrophils Lacking Platelet-Endothelial Cell Adhesion Molecule-1 Exhibit Loss of Directionality and Motility in CXCR2-Mediated Chemotaxis. The Journal Of Immunology 2005, 175: 3484-3491. PMID: 16148090, DOI: 10.4049/jimmunol.175.6.3484.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsCell ShapeChemokine CXCL1ChemokinesChemokines, CXCChemotaxis, LeukocyteCytokinesInterleukin-8Intracellular Signaling Peptides and ProteinsMiceMice, KnockoutNeutrophilsPlatelet Endothelial Cell Adhesion Molecule-1Protein Phosphatase 1Protein Tyrosine Phosphatase, Non-Receptor Type 6Protein Tyrosine PhosphatasesReceptors, Interleukin-8BConceptsCell motilitySrc homology 2 domainF-actinSHP-1 phosphatase activityWild-type neutrophilsF-actin polymerizationPhosphatase 1Time-lapse videomicroscopyPECAM-1Cytokine-induced mobilizationPhosphatase activityExhibit lossMurine neutrophilsMotilityChemotaxisZigmond chamberCellsPECAMLeading frontCytoskeletonMoesinIL-8FMLP gradientProteinActinNegative Regulation of Monocyte Adhesion to Arterial Elastic Laminae by Signal Regulatory Protein α and Src Homology 2 Domain-containing Protein-Tyrosine Phosphatase-1*
Liu SQ, Alkema PK, Tieché C, Tefft BJ, Liu DZ, Li YC, Sumpio BE, Caprini JA, Paniagua M. Negative Regulation of Monocyte Adhesion to Arterial Elastic Laminae by Signal Regulatory Protein α and Src Homology 2 Domain-containing Protein-Tyrosine Phosphatase-1*. Journal Of Biological Chemistry 2005, 280: 39294-39301. PMID: 16159885, DOI: 10.1074/jbc.m503866200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArteriesCell AdhesionElastic TissueIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsLeukocytesMonocytesPhosphorylationProtein Phosphatase 1Protein Tyrosine Phosphatase, Non-Receptor Type 6Protein Tyrosine PhosphatasesRatsRats, Sprague-DawleyReceptors, Cell SurfaceRNA, Small InterferingConceptsSHP-1Arterial elastic laminaeSrc homology 2 domain-containing protein tyrosine phosphataseSIRP-alphaSrc homology 2 domain-containing protein tyrosine phosphatase 1Protein tyrosine phosphatase 1Protein tyrosine phosphataseSignal regulatory protein alphaSignal regulatory protein αRegulatory protein alphaExtracellular matrix constituentsMonocyte adhesionArterial morphogenesisPhosphatase 1Regulatory protein αNegative regulationProtein alphaProtein αImportant functionsInduced activationDegradation peptidesInhibitory effectElasticity of arteriesAdhesionMatrix constituents
2004
The Glc7p Nuclear Phosphatase Promotes mRNA Export by Facilitating Association of Mex67p with mRNA
Gilbert W, Guthrie C. The Glc7p Nuclear Phosphatase Promotes mRNA Export by Facilitating Association of Mex67p with mRNA. Molecular Cell 2004, 13: 201-212. PMID: 14759366, DOI: 10.1016/s1097-2765(04)00030-9.Peer-Reviewed Original ResearchMeSH KeywordsBiological TransportCell NucleusGenetic VectorsIn Situ HybridizationModels, BiologicalmRNA Cleavage and Polyadenylation FactorsNuclear ProteinsNucleocytoplasmic Transport ProteinsPhosphoprotein PhosphatasesPhosphorylationPoly AProtein BindingProtein Phosphatase 1Protein Structure, TertiaryRNA-Binding ProteinsRNA, MessengerSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTemperatureUltraviolet RaysConceptsMRNA exportMammalian SR proteinsPromote mRNA exportSR-like proteinsEfficient mRNA exportS. cerevisiaeExport receptorAdaptor proteinCytoplasmic kinasesDephosphorylation eventsAlternative adaptorsFacilitative associationsBind mRNANpl3pSR proteinsGlc7pMex67pSerine-phosphorylationCytoplasmic phosphorylationProteinMRNAPhosphorylationAdaptorDephosphorylationRNA
2003
Receptor Activator of NF-κB Ligand Stimulates Recruitment of SHP-1 to the Complex Containing TNFR-Associated Factor 6 That Regulates Osteoclastogenesis
Zhang Z, Jimi E, Bothwell AL. Receptor Activator of NF-κB Ligand Stimulates Recruitment of SHP-1 to the Complex Containing TNFR-Associated Factor 6 That Regulates Osteoclastogenesis. The Journal Of Immunology 2003, 171: 3620-3626. PMID: 14500659, DOI: 10.4049/jimmunol.171.7.3620.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsCell DifferentiationCell LineCysteineGenetic VectorsGlycoproteinsIntracellular Signaling Peptides and ProteinsLigandsMacrophagesMembrane GlycoproteinsMiceMice, Inbred C57BLMice, Mutant StrainsNF-kappa BOsteoclastsOsteoprotegerinPhosphatidylinositol 3-KinasesPhosphorylationProtein Phosphatase 1Protein Serine-Threonine KinasesProtein SubunitsProtein TransportProtein Tyrosine Phosphatase, Non-Receptor Type 6Protein Tyrosine PhosphatasesProteinsProto-Oncogene ProteinsProto-Oncogene Proteins c-aktRANK LigandReceptor Activator of Nuclear Factor-kappa BReceptors, Cytoplasmic and NuclearReceptors, Tumor Necrosis FactorRetroviridaeSerinesrc Homology DomainsTNF Receptor-Associated Factor 6Transduction, GeneticTyrosineUp-RegulationConceptsSrc homology 2 domain-containing phosphatase 1Mitogen-activated protein kinaseExpression of SHPProtein kinaseBone marrow macrophagesSrc homology 2 domainTyrosine phosphatase SHP-1P38 mitogen-activated protein kinaseExtracellular signal-regulated kinaseC-Jun N-terminal kinasePhosphatase SHP-1Phosphatidylinositol-3 kinaseMarrow macrophagesAssociation of TRAF6Signal-regulated kinaseN-terminal kinaseMultinuclear osteoclast-like cellsPhosphorylation of AktP85 subunitPhosphatase 1Tyrosine phosphorylationPathways downstreamRANKL-induced phosphorylationRAW264.7 cellsKinase
2002
Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP 32 or Inhibitor 1
Zachariou V, Benoit-Marand M, Allen PB, Ingrassia P, Fienberg AA, Gonon F, Greengard P, Picciotto MR. Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP 32 or Inhibitor 1. Biological Psychiatry 2002, 51: 612-620. PMID: 11955461, DOI: 10.1016/s0006-3223(01)01318-x.Peer-Reviewed Original ResearchAnimalsAvoidance LearningBehavior, AnimalCocaineCorpus StriatumDopamineDopamine and cAMP-Regulated Phosphoprotein 32Dopamine Uptake InhibitorsElectric StimulationElectrochemistryMaleMiceMice, KnockoutMotor ActivityNerve Tissue ProteinsPhosphoprotein PhosphatasesPhosphoproteinsProtein Phosphatase 1Proteins
2001
Modulation of Ion Transport by Direct Targeting of Protein Phosphatase Type 1 to the Na-K-Cl Cotransporter*
Darman R, Flemmer A, Forbush B. Modulation of Ion Transport by Direct Targeting of Protein Phosphatase Type 1 to the Na-K-Cl Cotransporter*. Journal Of Biological Chemistry 2001, 276: 34359-34362. PMID: 11466303, DOI: 10.1074/jbc.c100368200.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Substrate proteinsNa-K-Cl cotransporterProtein phosphatase type 1Phosphatase type 1Intracellular chloride regulationPhosphatase specificityRegulatory phosphorylationPhosphatase 1Catalytic subunitMotif bindsSubunit bindsN-terminusPP1cMajor proteinsDirect bindingDirect interactionChloride regulationProteinGeneral mechanismDirect targetingMutantsMotifSubunitsBindsTARPP, a novel protein that accompanies TCR gene rearrangement and thymocyte education
Kisielow J, Nairn A, Karjalainen K. TARPP, a novel protein that accompanies TCR gene rearrangement and thymocyte education. European Journal Of Immunology 2001, 31: 1141-1149. PMID: 11298339, DOI: 10.1002/1521-4141(200104)31:4<1141::aid-immu1141>3.0.co;2-r.Peer-Reviewed Original ResearchAgingAmino Acid SequenceAnimalsAntibodiesBase SequenceCD3 ComplexCell DifferentiationCell LineageCells, CulturedCloning, MolecularDown-RegulationFlow CytometryGene Expression ProfilingGene Expression Regulation, DevelopmentalGene Rearrangement, T-LymphocyteMiceMice, Inbred C57BLMolecular Sequence DataMolecular WeightPhosphoproteinsProtein Phosphatase 1Receptors, Antigen, T-CellRNA, MessengerSignal TransductionThymus Gland
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply