2021
A Novel Technique for Redox Lipidomics Using Mass Spectrometry: Application on Vegetable Oils Used to Fry Potatoes
Koelmel JP, Aristizabal-Henao JJ, Ni Z, Fedorova M, Kato S, Otoki Y, Nakagawa K, Lin EZ, Pollitt K, Vasiliou V, Guingab JD, Garrett TJ, Williams TL, Bowden JA, Penumetcha M. A Novel Technique for Redox Lipidomics Using Mass Spectrometry: Application on Vegetable Oils Used to Fry Potatoes. Journal Of The American Society For Mass Spectrometry 2021, 32: 1798-1809. PMID: 34096708, DOI: 10.1021/jasms.1c00150.Peer-Reviewed Original Research
2020
Caryocar brasiliense Cambess. Pulp Oil Supplementation Reduces Total Cholesterol, LDL-c, and Non-HDL-c in Animals
Silva G, Di Pietro Fernandes C, Hiane P, de Cássia Freitas K, Figueiredo P, Inada A, Filiú W, Maldonade I, Nunes Â, de Oliveira L, Caires A, Michels F, Candido C, Cavalheiro L, Asato M, Donadon J, de Faria B, Tatara M, Croda J, Pott A, Nazário C, de Cássia Avellaneda Guimarães R. Caryocar brasiliense Cambess. Pulp Oil Supplementation Reduces Total Cholesterol, LDL-c, and Non-HDL-c in Animals. Molecules 2020, 25: 4530. PMID: 33022905, PMCID: PMC7582708, DOI: 10.3390/molecules25194530.Peer-Reviewed Original Research
2016
Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk.
Trevizan L, do Nascimento K, Santos J, Kassuya C, Cardoso C, do Carmo Vieira M, Moreira F, Croda J, Formagio A. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. Journal Of Ethnopharmacology 2016, 192: 510-515. PMID: 27612433, DOI: 10.1016/j.jep.2016.08.053.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Inflammatory AgentsAntioxidantsAntitubercular AgentsBenzothiazolesBiphenyl CompoundsCarrageenanChemotaxis, LeukocyteDexamethasoneDisease Models, AnimalDose-Response Relationship, DrugEdemaFemaleGas Chromatography-Mass SpectrometryMaleMiceMycobacterium tuberculosisOils, VolatilePhytotherapyPicratesPlant ExtractsPlant LeavesPlant OilsPlants, MedicinalPleurisySapindaceaeSulfonic AcidsTerpenesTime FactorsConceptsNatural anti-inflammatory agentAnti-inflammatory agentsSubcutaneous injectionOral administrationAnti-Mycobacterium tuberculosis activityAnti-mycobacterial activityAntioxidant activityTotal leucocytesEOAETuberculosis activityMycobacterium tuberculosisGas chromatography-mass spectrometrySignificant inhibitionMiceTraditional medicineEdemaPleurisyPositive controlReference standardDexamethasoneCarrageenanAdministrationModerate antioxidant activityInjectionMajor constituentsIdentification of a Chlamydomonas plastidial 2‐lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content
Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz‐Raffelt M, Kim Y, Song W, Nishida I, Li‐Beisson Y, Lee Y. Identification of a Chlamydomonas plastidial 2‐lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnology Journal 2016, 14: 2158-2167. PMID: 27133096, PMCID: PMC5096022, DOI: 10.1111/pbi.12572.Peer-Reviewed Original ResearchConceptsAcid acyltransferaseNitrogen-deficient conditionsOil contentPlastid membranesBiosynthetic pathwayStorage lipidsBiosynthetic processesReinhardtii cellsMicroalgal oil productionMolecular toolsSn-2 positionEnzyme assaysAlgal lipidsPhosphatidic acidCommon precursorMicroalgaeAcyltransferaseCoAMembranePlastidsLPAATChlamydomonasReinhardtiiLipidsGenesFlavor Identification and Intensity: Effects of Stimulus Context
Hallowell ES, Parikh R, Veldhuizen MG, Marks LE. Flavor Identification and Intensity: Effects of Stimulus Context. Chemical Senses 2016, 41: 249-259. PMID: 26830499, PMCID: PMC5006141, DOI: 10.1093/chemse/bjv087.Peer-Reviewed Original ResearchConceptsStimulus contextSensory eventsSignal detection theoryDifferent sessionsPerceptual spaceFlavor identificationIntensity ratingsOlfactory flavorantsContextual conditionsCitrus componentsDifferent contextsSweet intensityTask of identificationRatingsSessionsContextResponse criteriaStimuliJudgmentsTaskOral mixtureDecision rulesTheory
2014
Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model
Piccinelli A, Santos J, Konkiewitz E, Oesterreich S, Formagio A, Croda J, Ziff E, Kassuya C. Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model. Nutritional Neuroscience 2014, 18: 217-224. PMID: 24661285, DOI: 10.1179/1476830514y.0000000119.Peer-Reviewed Original ResearchConceptsCold hyperalgesiaMechanical hyperalgesiaAntidepressive actionOral treatmentLocomotor activityExhibit anti-inflammatory activityNerve injury modelNeuropathic pain modelDepressive-like behaviorDose of ketamineAnti-inflammatory activityOpen field testAntihyperalgesic effectNeuropathic painSNI ratsPain modelSwim testS. terebinthifolius fruitsInjury modelOral administrationHyperalgesiaSchinus terebinthifolius fruitsCold stimuliRatsTreatmentThe protective effect of ClinOleic against post-surgical adhesions
Altınel Y, Taşpınar E, Ozgüç H, Oztürk E, Ulker Akyıldız E, Bağdaş D. The protective effect of ClinOleic against post-surgical adhesions. Turkish Journal Of Trauma And Emergency Surgery 2014, 20: 1-6. PMID: 24639307, DOI: 10.5505/tjtes.2014.12244.Peer-Reviewed Original Research
2011
Olive Oil Polyphenol Oleuropein Inhibits Smooth Muscle Cell Proliferation
Abe R, Beckett J, Abe R, Nixon A, Rochier A, Yamashita N, Sumpio B. Olive Oil Polyphenol Oleuropein Inhibits Smooth Muscle Cell Proliferation. European Journal Of Vascular And Endovascular Surgery 2011, 41: 814-820. PMID: 21333557, DOI: 10.1016/j.ejvs.2010.12.021.Peer-Reviewed Original ResearchConceptsSmooth muscle cell proliferationMuscle cell proliferationCell cycle analysisSMC proliferationCell proliferationInhibits Smooth Muscle Cell ProliferationVascular smooth muscle cell proliferationCoronary artery diseaseNon-treated groupExtracellular signal-regulated kinase 1/2 activationCardiovascular mortalityArtery diseaseKinase 1/2 activationCell cycle blockG1-S phaseMediterranean dietDay 1Oleuropein treatmentGrowth of SMCsG1 phase regulatorsFlow cytometryVascular SMCsPresence of oleuropeinBeneficial effectsCycle analysis
2008
Olive Oil, the Mediterranean Diet, and Cardiovascular Health
Huang CL, Sumpio BE. Olive Oil, the Mediterranean Diet, and Cardiovascular Health. Journal Of The American College Of Surgeons 2008, 207: 407-416. PMID: 18722947, DOI: 10.1016/j.jamcollsurg.2008.02.018.Peer-Reviewed Original Research
2004
Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1
Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427: 260-265. PMID: 14712238, DOI: 10.1038/nature02282.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAnkyrinsCalcium ChannelsCalcium SignalingCannabinoidsCapsaicinCarbacholCells, CulturedCloning, MolecularDronabinolHumansMustard PlantNerve Tissue ProteinsNeurons, AfferentNociceptorsOocytesPlant OilsRatsRats, Sprague-DawleyRNA, MessengerThapsigarginTransient Receptor Potential ChannelsTrigeminal GanglionTRPA1 Cation ChannelTRPC Cation ChannelsConceptsMustard oilPrimary sensory neuronsSensory nerve fibersSensory nerve endingsTRP ion channel familyExcitatory effectsNerve endingsNerve fibersIon channel familyPungent ingredientSensory neuronsTopical applicationPsychoactive componentΔ9-tetrahydrocannabinolTRP channelsMolecular targetsANKTM1Channel familyMolecular mechanismsAllyl isothiocyanatePainInflammationWidespread useCapsaicinHypersensitivity
2003
Lessons from peppers and peppermint: the molecular logic of thermosensation
Jordt SE, McKemy DD, Julius D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Current Opinion In Neurobiology 2003, 13: 487-492. PMID: 12965298, DOI: 10.1016/s0959-4388(03)00101-6.Peer-Reviewed Original ResearchThe effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes
LLOR X, PONS E, ROCA A, ÀLVAREZ M, MAÑÉ J, FERNÁNDEZ-BAÑARES F, GASSULL MA. The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clinical Nutrition 2003, 22: 71-79. PMID: 12553953, DOI: 10.1054/clnu.2002.0627.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisCaco-2 CellsCells, CulturedCyclooxygenase 2Fish OilsGenes, bcl-2HT29 CellsHumansIsoenzymesKeratin-8KeratinsLinoleic AcidMembrane ProteinsMicroscopy, FluorescenceOleic AcidOlive OilPlant OilsProstaglandin-Endoperoxide SynthasesReverse Transcriptase Polymerase Chain ReactionSucrase-Isomaltase ComplexThymidineConceptsColorectal cancer developmentCOX-2Bcl-2 expressionFish oilCancer developmentHT-29 colorectal cancer cellsCell proliferationLinoleic acidColorectal cancer cellsMain dietary sourceFatty acidsLate effectsColorectal carcinogenesisAntineoplastic effectsNeoplastic processInduction of apoptosisEarly downregulationImportant mediatorOlive oilCancer cellsCaco-2Dietary sourcesBcl-2Different fatsApoptosis induction
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply